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Abstract. Selecting the right set of features for classification is one of the most important

problems in designing a good classifier. Decision tree induction algorithms such as C4.5 have

incorporated in their learning phase an automatic feature selection strategy while some other

statistical classification algorithm require the feature subset to be selected in a preprocessing

phase. It is well know that correlated and irrelevant features may degrade the performance of

the C4.5 algorithm. In our study, we evaluated the influence of feature pre-selection on the

prediction accuracy of C4.5 using a real-world data set. We observed that accuracy of the

C4.5 classifier could be improved with an appropriate feature pre-selection phase for the

learning algorithm. Beyond that, the number of features used for classification can be reduced

which is important for image interpretation tasks since feature calculation is a time-

consuming process.

1 Introduction

Selecting the right set of features for classification is one of the most important problems in

designing a good classifier. Very often we don’t know a-priori what the relevant features are

for a particular classification task. One popular approach to address this issue is to collect as

many features as we can prior to the learning and data-modeling phase. However, irrelevant

or correlated features, if present, may degrade the performance of the classifier. In addition,

large feature spaces can sometimes result in overly complex classification models that may

not be easy to interpret.

In the emerging area of data mining applications, users of data mining tools are faced with the

problem of data sets that are comprised of large numbers of features and instances. Such

kinds of data sets are not easy to handle for mining. The mining process can be made easier to

perform by focussing on a subset of relevant features while ignoring the other ones. In the
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feature subset selection problem, a learning algorithm is faced with the problem of selecting

some subset of features upon which to focus its attention.

In this paper, we present our study on features subset selection and classification with the

C4.5 algorithm. In Section 2, we briefly describe the criteria used for feature selection and the

feature selection methods. Although, C4.5 has a feature selection strategy included in its

learning performance, it has been observed that this strategy is not optimal. Correlated and

irrelevant attributes may degrade the performance of the induced classifier. Therefore, we use

feature subset selection prior to the learning phase. Besides the feature selection strategy used

by C4.5 we describe two other feature subset selection algorithms in Section 2: the contextual

merit algorithm (CM) (Hong, 1999) and the sequential floating forward selection algorithm

(SFFS) (Pudil et al., 1994).

For our experiments, we used a real data set that includes features extracted from x-ray

images which describe defects in a welding seam. It is usually unclear in these applications

what the right features are. Therefore, most analyses begin with as many features as one

extracts from the images. This process as well as the images is described in Section 3.

In Section 4, we describe our results. We show that the prediction accuracy of the C4.5

classifier will improve when provided with a pre-selected feature subset. The best result can

be shown for the SFFS algorithm. The results show that the feature subsets created by both

feature subset selection algorithm and the feature subset normally extracted by C4.5 have

many features in common. However, the C4.5 selects some features that are never selected by

the feature subset selection algorithm. We hypothesize that irrelevant features are weeded out

by the feature selection algorithm while they get selected by the C4.5 algorithm. A

comparison of the feature ranking done by the feature selection algorithm with the ranking of

the features done by C4.5 for the first 10 features used by C4.5 shows that there is a big
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difference. Finally, our experiments also indicate that model complexity does not significantly

change for the better or worse when pre-selecting features with feature selection.

2 Feature Subset Selection Algorithms

Following Jain et al. (Jain and Zonker, 1997), we can describe feature subset selection as

follow: Let Y be the original set of features, with cardinality n. Let d represent the desired

number of features in the selected subset X, X⊆Y. Let the feature selection criterion function

for the set X be represented by J(X). Without any loss of generality, let us consider a higher

value of J to indicate a better feature subset. Formally, the problem of feature selection is to

find a subset X⊆Y such that |X|=d and 
dZYZ
ZJXJ

=⊆
=

,
)(max)( . An exhaustive approach to this

problem would require examining all ⎟
⎠
⎞

⎜
⎝
⎛

d

n
 possible d-subsets of the feature set Y.

Feature selection algorithm differ in the search strategy, the feature selection criteria, the way

they add or delete an individual feature or a subset of features at each round of feature

selection and the overall model for feature selection.

According to the quality criteria (Nadler and Smyth, 1993) for feature selection, the model for

feature selection can be distinguished into the filter model and the wrapper model (Cover,

1977), (Kohavi and John, 1998). The wrapper model attempts to identify the best feature

subset for use with a particular algorithm, while the filter approach attempts to assess the

merits of features from the data alone. The inclusion of the particular classifier into the

feature selection process makes the wrapper approach more computationally expensive and

the resulting feature subset will only be appropriate for the used classifier while the filter

approach is classifier independent. However, both models require a search strategy that

should come close to optimal. Various search strategies have been developed in order to

reduce the computation time.
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There have been developed different filter approaches over time in traditional pattern

recognition and artificial intelligence. Two well-known algorithms that have been developed

within the artificial intelligence community are FOCUS ( Almuallim and Diettrich, 1994) and

RELIEF (Kira and Rendell, 1992). The FOCUS algorithm starts with an empty feature set and

carries out exhaustive search until it finds a minimal combination of features. It works on

binary, noise-free data. RELIEF algorithm assigns a relevance weight to each feature, which

is meant to denote the relevance of the feature to the target concept. RELIEF samples

instances randomly from the training set and updated the relevance values based on the

difference between the selected instance and the two nearest instances of the same and

opposite classes. Lui et al. (Lui and Setiono, 1996) proposed a probabilistic approach to the

search problem of the optimal set of features based on the Las Vegas algorithm. Koller et al.

(Koller and Sahami, 1996) proposed an approach based on using cross-entropy to minimize

the amount of predictive information loss during feature elimination. It starts with the full

feature set and eliminates feature according to the selection criteria. It leads to suboptimal

results. Both approaches should be easy to implement and they are efficient in handling large

data sets.

An overview of feature subset selection algorithm from the pattern recognition side is given

in Jain et al. (Jain and Zonker, 1997). Beyond the exhaustive search, branch-and-bound

feature selection can be used to find the optimal subset of features much more quickly than

exhaustive search. One drawback is that the branch-and-bound procedure requires the feature

selection criteria to be monotone. A suboptimal feature selection method that has been shown

results that come close to optimal is the SFFS algorithm.

Beyond that, some common learning algorithm have built in feature selection, for example,

C4.5. Clustering of features and selecting groups of features that are most dissimilar is also a

common approach for feature subset selection (Perner, 2000).
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We have selected for our study three suboptimal approaches: C4.5 algorithm, the CM

algorithm that has some similarity with RELIEF algorithm, and the SFFS algorithm.

The feature selection in C4.5 may be viewed as a filter approach, just as the CM algorithm

and the SFFS algorithm. The CM algorithm selects features according to their "obligation" to

the class discrimination in the context of other features. In opposition to that, the SFFS

algorithm selects features according to their statistical correlation between each feature and

the class. Besides that, both algorithms differ in the search strategy. While the SFFS

algorithm is a traditional technique used in pattern recognition, the CM algorithm is a new

algorithm developed by the data mining community.

2.1 Feature Selection done by Decision Tree Induction

Determining the relative importance of a feature is one of the basic tasks during decision tree

generation. The most often used criteria for feature selection is information theoretic based

such as the Shannon entropy measure I for a data set. If we subdivide a data set using values

of an attribute as separators, we obtain a number of subsets. For each of these subsets we can

compute the information value Ii. Ii will be smaller than I, and the difference (I-Ii) is a

measure of how well the attribute has discriminated between different classes. The attribute

that maximizes this difference is selected.

The measure can also be viewed as a class separability measure. The main drawback of the

entropy measure is its sensitivity to the number of attributes values (White and Lui, 1994).

Therefore C4.5 uses the gain ratio. However, this measure suffers the drawback that it may

choose attributes with very low information content (Lopez de Mantaras, 1991).

C4.5 (Quinlan, 1993) uses a univariate feature selection strategy. At each level of the tree

building process only one attribute, the attribute with the highest values for the selection

criteria, is picked out of the set of all attributes. Afterwards the sample set is split into sub-
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sample sets according to the values of this attribute and the whole procedure is recursively

repeated until only samples from one class are in the remaining sample set or until the

remaining sample set has no discrimination power anymore and the tree building process

stops.

As we can see feature selection is only done at the root node over the entire decision space.

After this level, the sample set is split into sub-samples and only the most important feature in

the remaining sub-sample set is selected. Geometrically it means that the search for good

features is only done in orthogonal decision subspaces, which might not represent the real

distributions, beginning after the root node. Thus, unlike statistical feature search strategies

(Fukunaga, 1990) this approach is not driven by the evaluation measure for the combinatorial

feature subset; it is only driven by the best single feature. This might not lead to an optimal

feature subset in terms of classification accuracy.

Decision tree users and researchers have recognized the impact of applying a full set of

features to a decision tree building process versus applying only a judiciously chosen subset.

It is often the case that the latter produces decision trees with lower classification errors,

particularly when the subset has been chosen by a domain expert. Our experiments were

intended to evaluate the effect of using multivariate feature selection methods as pre-selection

steps to a decision tree building process.

2.2 Contextual Merit Algorithm

For our experiment, we used the contextual merit (CM) algorithm (Hong, 1996). This

algorithm employs a merit function based upon weighted distances between examples which

takes into account complete feature correlation's to the instance class. The motivation

underlying this approach was to weight features based upon how well they discriminate

instances that are close to each other in the Euclidean space and yet belong to different
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classes. By focusing upon these nearest instances, the context of other attributes is

automatically taken into account.

To compute contextual merit, the distance d k
rs  between values zkr  and zks  taken by feature k

for examples r and s is used as a basis. For symbolic features, the inter-example distance is 0

if  zkr = zks, and 1 otherwise. For numerical features, the inter-example distance is

, where tk  is a threshold for feature k (usually 1/ 2 of the magnitude of range

of the feature ). The total distance between examples r and s is with Nf the

total number of features and the contextual merit for a feature f is ∑ ∑= ∈
= N
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where N is the total number of examples, C(r) is the set of examples not in the same class as

examples r, and  wf
rs  is a weight function chosen so that examples that are close together are

given greater influence in determining the merit of each feature. In practice, it has been

observed that 
2

1

rs
ij D

w =  if s is one of k nearest neighbors to r, and 0 otherwise, provides

robust behavior as a weight function. Additionally, using )(log2 rC  as the value for k has

also exhibited robust behavior. This approach to computing and ordering features by their

merits has been observed to be very robust, across a wide range of examples.

2.3 Floating Search Method

The feature subset selection algorithm described in the former chapter performs in the first

step a greedy search over all examples and it focuses afterwards on the computation of the

)(log2 rC  nearest examples based upon an Euclidean space. The first step is a very time-

consuming process and the question arises if second step of the algorithm, where the real

merits are calculated, will lead to a near optimal solution.
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Various other search strategies have been developed to find the subset of features optimizing

an adopted criterion. The well-known Sequential Forward Selection (SFS) and Sequential

Backward Selection (SBS) are step-optimal only since the best (the worst) feature is always

added (discarded) in SFS and SBS, respectively. This results in nested feature subsets without

any chance to correct the decision in later steps, causing the performance to be often far from

optimal. The idea behind the previous methods aimed at counteracting the nesting effect, can

be more efficiently implemented by considering conditional inclusion and exclusion of

features controlled by the value of the criterion itself. The Sequential Floating Forward

Selection (SFFS) procedure consists of applying after each forward step a number of

backward steps as long as the resulting subsets are better than the previously evaluated ones at

that level. Consequently, there are no backward steps at all if the performance cannot be

improved. The description of the algorithm can be found in (Pudil et al., 1994). Here, we want

to compare the performance of the former algorithm with the SFFS algorithm when the

evaluation criterion is the Mahalanobis distance dij: )()( 1
jijiij xxSxxd −−= − , where S -1

is the pooled sample covariance matrix. The Mahalanobis distance incorporates the

correlation between features and standardizes each feature to zero mean and unit variance.

3 Data Set

A detailed description of the data set can be found in (Jacobsen et al., 1999). Here we can try

to briefly sketch out how the data set was created and what features were used.

The subject of this investigation is the in-service inspection of welds in pipes of austenitic

steel. The flaws to be looked for in the austenitic welds are longitudinal cracks due to

intergranular stress corrosion cracking starting from the inner side of the tube.

The radio-graphs are digitized with a spatial resolution of 70 mm and a gray level resolution

of 16 bits per pixel. Afterwards they are stored and decomposed into various Regions of
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Interest (ROI) of 50 x 50 pixel size. The essential information in the ROIs is described by a

set of features which are calculated from various image-processing methods.

Images of flaws in welds are radio-graphed by local grey level discontinuities. Subsequently,

the morphological edge finding operator, the derivative of Gaussian operator and the

Gaussian weighted image moment vector operator are used for feature extraction.

The morphological edge  detection operator consists of a combination of morphological

operators (i.e. dilation and erosion) which move the gray value edges in an image in different

directions. The difference in image dilation(g(p)) – g(p) and g(p) – erosion(g(p)) result in

respectively shifted edge-images (where g(p) is the original image). After a final minimum

operation on both images, the steepest edges remain in the resulting image as the maxima.

The derivative of Gaussian filter is based on a combination of a Gaussian smoothing followed

by a partial differentiation of the image in the x-and y- directions. The result of the filter is

chosen as the maximum of the gradient magnitude.

Another filter is designed specially for flaw detection in radio-graphs of welds. This method

uses the vector representation of the image and calculates the image moments in an analogous

fashion to the model known from mechanics.

A one-dimensional FFT-filter for crack detection problem is also employed. This filter is

based on the assumption that the cracks have a preferential horizontal direction in the image.

The second assumption is based upon the empirical observation that the half power width of a

crack indication is smaller than 300mm. The filter consists of a one-dimensional FFT high-

pass Bessel operation along a direction orthogonal to that of the cracks, that works with a

cutoff frequency of 2 L/mm. Normally the half-power width of under-cuts is greater so that

this filter suppresses them. This means that it is possible to distinguish between under-cuts

and cracks with this FFT-filter. A row-oriented low-pass that is applied to the output of this

filter helps to eliminate noise and to point out the cracks more clearly.
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Furthermore, a Wavelet filter is also used. The scale representation of the image after the

Wavelet transform makes it possible to suppress the noise in the image with a simple

threshold operation without losing significant parts of the content of the image. The noise in

the image is an interference of film and scanner noise and irregularities caused by the material

of the weld.

The features which describe the content of the ROI are extracted from profile plots which run

through the ROI perpendicular to the weld. In a single profile plot, the position of a local

minimum is detected which is surrounded by two maxima that are as large as possible. This

definition varies a little depending on the corresponding image processing routine. A template

which is adapted to the current profile of the signal allows us to calculate various features.

Additionally, the half-power width and the respective gradients between the local extrema are

calculated. To avoid statistical calculation errors, the calculation of the template features is

averaged over all of the columns along an ROI. The schematic processing chain is shown in

Figure 1. The appearance of the defect in a welding seam and their corresponding profile

plots as well as the template used for feature calculation are shown in Figure 2.

The methods outlined here lead to 36 parameters being collected for every ROI. The data set

used in this experiment contains features for ROIs from background, crack and undercut

regions. The data set consists of altogether 1924 ROIs, 1024 of which are extracted from

regions with no disturbance, 465 from regions with cracks and 435 from regions with under-

cuts.

4 Results

Table 1 illustrates the error rate for the C4.5 classifier when using all features as well as the

error rates for different feature subsets calculated based on the CM algorithm. The error rate

was estimated using cross-validation. The maximum improvement in accuracy is 1.77 percent
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for the pruned tree which is obtained as the difference between the error rate when using all

features (24.454 in case of the unpruned tree) and the error rate when the feature number is 20

(22.7769 in case of the unpruned tree). Table 3 illustrates the error rate for the C4.5 classifier

when using all features as well as error rates for different feature subsets calculated based on

the SFFS algorithm. The maximum improvement in accuracy is 2.5 percent for the pruned

tree which is obtained as the difference between the error rate when using all features (24.454

in case of the unpruned tree) and the error rate when the feature number is 20 (22.0489 in case

of the unpruned tree). To interpret this improvement, we use a classification analysis

conducted earlier (Hughes, 1968), where performance actually peaked and then deteriorated

as the number of features was increased, see Figure 3 for the CM algorithm and Figure 5 for

the SFFS algorithm. We observe similar behavior in our experiments. Classification error is at

its minimum in both cases when the feature subset size is 20. This is in contrast to the feature

subset size of 30 that C4.5 selects when presented with the entire feature set, with no pre-

selection.

It is interesting to note that in the best case both feature subsets have only 12 of 20 features in

common, see Figure 4 and Figure 6. This might lead to the slightly better result of the SFFS

algorithm. However, both algorithms give the best result for the feature subset with 20

features.

It may be argued that it is not worth doing feature subset selection before tree induction since

the improvement in prediction accuracy is not so dramatic. However, the importance of an

improvement, however small, clearly depends on the requirements of the application for

which the classifier is being trained. We further observed (Figure 4, for 20 features) that about

44% of the total features are used similarly by CM and C4.5, while about 5% of the features

are exclusively selected by CM, 41% are exclusively selected by C4.5, and 10% are not used

at all. In case of SFFS, we observed (Figure 6, for 20 features) that about 47 % of the total
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features are used similarly by SFFS and C4.5, while about 5% of the features are exclusively

selected by SFFS, 38% are exclusively selected by C4.5, and 10% features are not used at all.

Table 2 and Table 4 show that the tree does not necessarily become more compact even if a

reduced set of features is used. The tree actually becomes even larger in the case with the best

error rate. This observation becomes clear if we look at the mechanism of the tree induction

process. The algorithm recursively splits the decision space by axis-parallel decision surfaces

during the tree building process. This can result in decision rules of the form e.g. IF F8≥10

AND .... AND F8≥1 .... THEN Class_X. One feature is used several times in one path of the

decision tree. We therefore cannot draw any useful conclusion about feature set size and its

relation to model complexity. We also observe (Figure 4 and Figure 6) that in comparing the

two trees generated by C4.5 by one of the feature pre-selection algorithms, the feature used

for splitting at the root node changes. This is even true if we compare the first node of the

trees generated from the two feature pre-selection algorithm.

5 Conclusion

We have studied the influence of feature subset selection based on two filter approaches to the

performance of C4.5. Our experiment was motivated by the fact that C4.5 uses a non-optimal

feature search strategy. We used the CM algorithm for feature subset selection which

measures importance of a feature based on a contextual merit function. Besides that we used

the SFFS feature subset selection algorithm that takes into account feature correlation and has

a different search strategy which provides a close to optimal solutions. Our results show that

feature subset selection can help to improve the prediction accuracy of the induced classifier.

However, it may not lead to more compact trees and the prediction accuracy may not increase

dramatically.
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The SFFS algorithm performs slightly better than the CM algorithm. Nevertheless, the

algorithmic properties of the CM algorithm are better for handling large databases. Both

algorithms produce the best result for 20 features.

The main advantage may be that fewer features required for classification can be important

for applications such as image interpretation where computational costs for extracting the

features may be high and require special purpose hardware. For such domains, feature pre-

selection to prune down the feature set size may be a beneficial analysis phase.
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Improvement
E=Li-L1

unpruned pruned pruned
L1 all (C4.5) 24,9610 24,5450 4,1601
L2 10 29,4332 28,7051 -4,1601
L3 15 26,3650 26,4171 -1,8721
L4 20 23,7649 22,7769 1,7681
L5 24 24,4930 23,5049 1,0401
L6 28 25,1170 24,0770 0,4680

Crossvalidation
Features

Line Number
Li  i=(1,2,..,6)

Table 1 Error Rate for Different Feature Subsets based on CM Algorithm
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Number of Features 10 15 20 24 28 36

Nodes 236 204 178 166 164 161

Edges 237 206 176 137 161 159

Table 2 Number of Nodes and Edges
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Improvement

E=Li-L1
unpruned pruned pruned

L1 all (C4.5) 24,9610 24,5450 2,8600
L2 10 31,8700 27,4050 -2,8600
L3 15 24,9610 24,5970 -0,0520
L4 20 23,2969 22,0489 2,4961
L5 24 25,8450 24,0250 0,5200

Crossvalidation
Features

Line Number
Li  i=(1,2,..,5)

Table 3 Error Rate for Different Feature Subsets based on SFFS Algorithm
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Number of Features 10 15 20 24 36

Nodes 436 368 366 466 161

Edges 437 370 368 437 159

Table 4 Number of Nodes and Edges
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Decision Tree Classifier

Figure 1 Schematic Representation of Processing Chain
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Figure 2 ROI of a crack, an undercut and of a region without disturbance with corresponding cross
sections and profile plots
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Error Rate for Different Number of 
Features 
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Figure 3 Error Rates for Different Size Feature Sets based on CM Algorithm
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A t tr ib u te s 1 0 1 5 2 0 2 4 2 8 C  4 .5 R a n k N a m e N u m b e r  in  T re e N a m e

2 0 0 1 1 1 1 1 4 1 1 9
3 1 1 1 1 1 1 2 2 2 2 1 3
4 1 1 1 1 1 1 3 2 3 2 2 2 7
5 0 0 0 0 0 1 4 3 3 1 3
6 0 1 1 1 1 1 5 1 0 3 2 3 1
7 0 0 1 1 1 6 2 4 3 3 2 4
8 0 1 1 1 1 0 7 1 7 3 4 3 4
9 1 1 1 1 1 1 8 1 9 4 1 3 7

1 0 1 1 1 1 1 0 9 9 4 2 3 1
1 1 0 0 0 0 0 1 1 0 3 1 4 3 3
1 2 0 0 0 1 1 1 1 1 3 6 4 4 1 0
1 3 0 0 0 0 0 1 1 2 3 5 4 5 3 1
1 4 0 0 0 0 0 1 1 3 8 4 6 3 4
1 5 0 0 0 0 1 1 1 4 6 4 7 2
1 6 0 0 0 0 0 1 1 5 3 4 4 8 3 5
1 7 0 1 1 1 1 0 1 6 2 9 5 1 N o n e
1 8 0 0 0 0 1 1 1 7 2 5 2 N o n e
1 9 1 1 1 1 1 1 1 8 2 7 5 3 8
2 0 0 0 0 1 1 0 1 9 3 7 5 4 6
2 1 0 0 0 0 0 1 2 0 3 2 5 5 N o n e

2 2 1 1 1 1 1 0 5 6 N o n e
2 3 0 1 1 1 1 1 5 7 N o n e
2 4 1 1 1 1 1 1 5 8 N o n e
2 5 0 0 0 0 0 1 5 9 9
2 6 0 0 0 0 0 1 5 A 1 7
2 7 0 0 1 1 1 1 5 B 2 4
2 8 0 0 0 1 1 1 5 C 2 7
2 9 0 1 1 1 1 1 5 D N o n e
3 0 0 0 0 0 1 1 5 E N o n e
3 1 1 1 1 1 1 1 5 F 2 2
3 2 0 0 1 1 1 1 5 G 2 4

3 3 0 0 0 0 1 1

3 4 0 0 1 1 1 1

3 5 1 1 1 1 1 1

3 6 1 1 1 1 1 1

3 7 0 0 1 1 1 1

N u m b e r u s e d 1 0 1 5 2 0 2 4 2 8 3 1

Figure 4 Ranked Feature and the first 10 Features used by the Decision Tree
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Figure 5 Error Rates for Different Size Feature Subsets based on SFFS Algorithm
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Attributes 10 15 20 24 C4.5 Rank Name Number in Tree Name

2 1 1 1 1 1 1 2 11 15

3 0 0 0 0 1 2 5 21 24

4 0 0 0 0 1 3 6 22 33

5 0 1 1 1 1 4 7 31 15

6 1 1 1 1 1 5 8 32 31

7 0 0 1 1 1 6 10 33 25

8 1 1 1 1 0 7 11 34 29

9 0 0 0 0 1 8 13 41 25

10 1 1 1 1 0 9 15 42 29

11 1 1 1 1 1 10 23 43 24

12 0 0 0 0 1 11 24 44 15

13 1 1 1 1 1 12 25 45 36

14 0 0 0 1 1 13 26 46 32

15 0 1 0 1 1 14 27 47 31

16 0 0 0 1 1 15 29 48 13

17 0 0 0 0 0 16 31 51 32

18 0 0 0 0 1 17 32 52 10

19 0 0 0 1 1 18 33 53 32

20 0 0 0 0 0 19 34 54 29

21 0 0 0 0 1 20 36 55 13

22 0 0 0 0 0 56 24

23 1 0 1 1 1 57 31

24 0 0 1 1 1 58 27

25 0 0 1 1 1 59 32

26 1 1 1 1 1 5A 34

27 1 1 1 1 1 5B 15

28 0 0 0 0 1 5C 29

29 0 0 1 1 1 5D 31

30 0 0 0 0 1 5E none

31 0 1 1 1 1 5F 29

32 0 1 1 1 1 5G 25

33 0 1 1 1 1

34 1 1 1 1 1

35 0 0 0 1 1

36 0 0 1 1 1

37 0 0 0 0 1

Number used 10 15 20 24 31

Figure 6 Ranked Features and the first 10 Features used by the Decision Tree
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Figure 1 Schematic Representation of Processing Chain

Figure 2 ROI of a crack, an undercut and of a region without disturbance with corresponding
cross sections and profile plots

Figure 3 Error Rates for Different Size Feature Sets based on CM Algorithm

Figure 4 Ranked Feature and the first 10 Features used by the Decision Tree

Figure 5 Error Rates for Different Size Feature Subsets based on SFFS Algorithm

Figure 6 Ranked Features and the first 10 Features used by the Decision Tree


